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Abstract

In this paper we address theoretical issues related to a class of nonlin-

ear parabolic systems used in toxicokinetic modeling. We establish the well-

posedness of these systems in a weak or variational setting by proving the

existence of a unique solution which depends continuously on the data. These

results are then applied speci�cally to the model equations for a physiologically

based pharmacokinetic model for the systemic transport of trichloroethylene

(TCE), which is the motivating example for our e�orts here.

In addition, we present theoretical results for the parameter estimation

problem associated with the general class of abstract systems and the example

TCE model. These results further establish the convergence of the Galerkin

approximations used in the numerical scheme for the TCE model.

1 Introduction

In this paper we present theoretical results related to a class of physiologically based

pharmacokinetic (PBPK) models. PBPK models are widely used in the �eld of

toxicology to describe the uptake, systemic transport and elimination of compounds

within humans and animals. These compartmental models lead to a system of
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coupled algebraic and di�erential equations, where each equation represents the

transport of the compound through a given organ or tissue. The standard PBPK

models, known as the perfusion-limited and di�usion-limited models, are ODE-

based models that are derived using simple mass balance principles and assumptions

of uniformity and rapid equilibrium [20].

In some cases, the assumption of a \well-mixed" compartment is not appro-

priate for tissues with heterogeneous physiological properties. For example, large

degrees of spatial variations in cell size, lipid distribution, and membrane perme-

ability within adipose (fat) tissue may lead to spatially-dependent concentrations

of highly lipophilic (fat-soluble) compounds there. To more accurately capture the

e�ects of these tissue heterogeneities, specialized PDE-based compartmental mod-

els can be developed by incorporating the speci�c physiology of the tissue into the

model assumptions. The resulting compartment is then coupled with the standard

PBPK compartments for the remaining organs and tissues, yielding a hybrid PBPK

whole-body model.

Examples of hybrid PBPK models include a CFD-PBPK model for nasal gas

and vapor uptake [12], a distributed parameter-PBPK model for inhalation and

dermal absorption [26], and a hybrid PBPK model for the systemic transport of

trichloroethylene (TCE). The TCE model, which motivates our e�orts here, includes

a specialized axial dispersion-based model for the transport of TCE in the adipose

tissue, where TCE is known to accumulate [29].

TCE is a highly lipophilic solvent that has been used widely in industry as a

metal degreasing agent. Now a common soil and groundwater contaminant, TCE

can be found at Superfund sites and Department of Defense facilities across the

United States [28]. Humans come into contact with TCE most often by inhaling

TCE vapor in an industrial setting, or more commonly by drinking contaminated

water.

TCE and several of its metabolites are known to produce toxic e�ects in humans.

Acute exposure to TCE impacts the central nervous system, causing symptoms such

as fatigue, headaches, dizziness and drowsiness [16]. Several of its metabolites are

suspected of causing toxicity in animals and/or humans [10, 21], including liver,

lung and kidney tumors [9, 10, 11, 17], as well as developmental defects [8, 27].

A key property of TCE that greatly a�ects its pharmacokinetics is its high degree

of lipophilicity, which leads to the accumulation of TCE in the adipose tissue. Nu-

merous studies have demonstrated that adipose tissue is highly heterogeneous, with

wide variations in fat cell size, metabolic activity, blood 
ow rates, and membrane

permeability [13, 14, 18, 25]. Moreover, the amount of lipid in each adipocyte is
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known to vary, creating an uneven distribution of lipids across the tissue [18]. Since

TCE and other compounds of interest are highly lipophilic, this uneven distribu-

tion of lipids may lead to an uneven distribution of the compounds themselves.

This would then result in a spatially dependent concentration function for such a

compound inside the adipose tissue.

In Section 2 we present an overview of the TCE PBPK-hybrid model, including

the state space settings and weak formulation. This model is the motivation for the

theoretical results we develop here for a general abstract class of nonlinear parabolic

systems that may arise in toxicokinetic modeling. In Section 3 we establish the

existence of unique weak solutions for the general class of problems and the TCE

PBPK-hybrid model. Finally, in Section 4 we address theoretical issues related to

the associated parameter estimation problem. The results presented in this paper

also provide a framework for a numerical scheme that we implement computationally

in [22] for model simulation and parameter identi�cation. Moreover, we establish

the theoretical convergence of numerical solutions to the solution for the in�nite-

dimensional system of model equations.

2 The TCE PBPK-hybrid model

In this section we provide an overview of the TCE PBPK-hybrid model, which is

developed and discussed in full detail in [2, 22]. The compartmental model for the

adipose tissue is based on the axial dispersion model of Roberts and Rowland [24]

for the transport of solutes in the liver, and is adapted for the speci�c physiology

of adipose tissue. This aggregate model uses a representative \cell" to capture

the transport behavior in a collection of many similar \cells" that have varying

properties.

In this particular case, the representative unit includes a single adipocyte (fat

cell) with an adjoining capillary, both immersed in the surrounding interstitial 
uid.

As discussed in [2, 22], the adipocyte is represented by a sphere centered at the origin

with radius r1, and the capillary is a cylindrical tube with circular cross-section and

central axis r = r2+�, � = �0, "1 < � < "2 in spherical coordinates. The interstitial


uid �lls in the space surrounding the other two regions.

We assume that blood and TCE enter the representative adipose capillary region

from the arterial blood system. The transport within the capillary is described by

a one-dimensional convection-dispersion equation, while the exchange between the

capillary and the other two adipose regions (adipocyte and interstitial space) is

modeled using Fick's �rst law of di�usion. Moreover, we use 
ux balance to derive
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boundary conditions that connect the capillary region to the arterial and venous

blood systems. Within each of the adipocyte and interstitial regions, we have a

two-dimensional di�usion equation, as well as the terms representing the passive

transport between all three regions. The boundary conditions in the adipocyte and

interstitial space are standard periodic and �niteness conditions that are appropriate

for di�usion on a spherical domain.

The other tissue compartments used in the PBPK-hybrid model correspond

to the brain, kidney, liver, muscle and remaining tissues, and each is modeled

as a perfusion-limited compartment. We assume uptake via inhalation in the

lungs, which is modeled using a steady-state assumption. Moreover, we include

a Michaelis-Menten term in the liver to represent the metabolism of TCE there.

See [2, 22] for a detailed derivation and discussion of the model equations.

2.1 State space setting and weak formulation

Here we present the weak or variational formulation for the TCE PBPK-hybrid

model. First we consider the three regions of the adipose tissue compartment. The

domain for the capillary region of the adipose tissue is given by the arc

�
B = f(r; �; �) : r = r1; � = �0; "1 < � < � � "2g

in spherical coordinates, and the domain for the adipocyte and interstitial regions

is the spherical shell

�
IA = f(r; �; �) : r = r1; 0 � � � 2�; 0 � � � �g:

Note that both r and � are constant in the domain �
B , so that we may write

u = u(�) for functions u 2 �
B . Similarly, since r is constant in �
IA we write

u = u(�; �) for u 2 �
IA. In both cases, r = r1 is understood.

We choose the following state spaces for the regions of the adipose dispersion

model: H1
B = H1(�
B) in the capillary region and

H1
IA � H1

per(
�
IA) = fu 2 H1(�
IA) : u(�; �) = u(� + 2�; �)g

in the interstitial and adipocyte regions. The norms and inner products on these
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spaces are de�ned by

hu; viB =

Z ��"2

"1

u(�)v(�) sin � d� for u; v 2 L2(�
B);

juj2B =

Z ��"2

"1

ju(�)j2 sin� d� for u 2 L2(�
B);

juj2H1
B

=

Z ��"2

"1

 ���� 1r1
@u(�)

@�

����
2

+ ju(�)j2
!
sin� d� for u 2 H1(�
B);

hu; viIA =

Z 2�

0

Z �

0

u(�; �)v(�; �) sin � d� d� for u; v 2 L2(�
IA);

juj2IA =

Z 2�

0

Z �

0

ju(�; �)j2 sin� d� d� for u 2 L2(�
IA);

juj2H1
IA

=

Z 2�

0

Z �

0

 ���� 1

r1 sin�

@u(�; �)

@�

����
2

+

���� 1r1
@u(�; �)

@�

����
2

+ ju(�; �)j2
!
sin� d� d� for u 2 H1

per(
�
IA):

Note that in spherical coordinates, for u 2 H1(�
B) we have

ru =
�
@u

@r
;

1

r sin�

@u

@�
;
1

r

@u

@�

�
=

�
0; 0;

1

r1

@u

@�

�
;

and for u 2 H1(�
IA) we have

ru =
�
@u

@r
;

1

r sin�

@u

@�
;
1

r

@u

@�

�
=

�
0;

1

r1 sin�

@u

@�
;
1

r1

@u

@�

�
:

We now de�ne the state space V = H1
B � H1

IA � H1
IA � R

6 and the space

H = L2(�
B) � L2(�
IA) � L2(�
IA) � R
6 , with corresponding norms and inner

product

juj2V = ju1j2H1
B
+ ju2j2H1

IA
+ ju3j2H1

IA
+

9X
i=4

juij2 for u 2 V ;

juj2H = ju1j2B + ju2j2IA + ju3j2IA +

9X
i=4

juij2 for u 2 H

hu; vi = hu1; v1iB + hu2; v2iIA + hu3; v3iIA +

9X
i=4

uivi for u; v 2 H:

Let � denote the boundary of the domain �
IA. Since �
IA is de�ned as a spherical

shell in spherical coordinates, we can choose the boundary � to be any �xed value

of �. Therefore we de�ne � = f(r; �; �) : r = r1; � = �0; 0 � � � �g. Moreover, we

de�ne the trace operator T 0
�0
: H1(�
IA)! L2(�) so that

T 0
�0
u = uj�=�0 (1)

for any u 2 H1(�
IA), where

juj2L2(�) =

Z �

0

ju(�)j2 sin� d�
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for all u 2 L2(�), and where jujH1(�
IA)
= jujH1

IA

.

It follows from the Trace Theorem (see Theorem 6 in [23], p. 240) that there

exists K1 > 0 such that for every u 2 H1(�
IA) we have��T 0
�0
u
��
L2(�)

� K1 jujH1
IA
:

Here we are seeking a solution y(t) 2 V which satis�es the initial condition

y(0) = y0 2 H and

h _y(t);  iV�;V + �(y(t);  ) + hg(y(t));  iH = hf(t);  iV�;V (2)

for all  2 V , where

�(u; v) = ha1
r21

@u1

@�
� a2

r1
u1;

@v1

@�
iB + ha3u1 � a4T

0
�0
u2; v1iB

+ ha5u1 � a6T
0
�0
u3; v1iB + h�a7u4; v1("1)iR+ ha8u4; v1(� � "2)iR

+ h b1

r21 sin
2 �

@u2

@�
;
@v2

@�
iIA + h b1

r21

@u2

@�
;
@v2

@�
iIA

+ hÆ�0(�)�B(�)(�b2u1 + b3u2) + b4u2 � b5u3; v2iIA
+ h c1

r21 sin
2 �

@u3

@�
;
@v3

@�
iIA + h c1

r21

@u3

@�
;
@v3

@�
iIA

+ hÆ�0(�)�B(�)(�c2u1 + c3u3) + c4u3 � c5u2; v3iIA
+ h�d1u1(� � "2) + d2u4 � d3u5 � d4u6 � d5u7 � d6u8 � d7u9; v4iR
+ h�e1u4 + e2u5; v5iR+ h�h1u4 + h2u6; v6iR+ h�`1u4 + `2u7; v7iR
+ h�p1u4 + p2u8; v8iR+ h�s1u4 + s2u9; v9iR (3)

g(y) = [0; 0; 0; 0; 0; 0; 0; 0; g9(y9)]
T (4)

f(t) =

2
66666666666666666666664

VBQpQc

1000ABr1(Qc+
Qp

Pb
)
Cc(t)Æ"1(�)

0

0

0
QbrQc

Qc+
Qp

Pb

Cc(t)

QkQc

Qc+
Qp

Pb

Cc(t)

QmQc

Qc+
Qp

Pb

Cc(t)

QtQc

Qc+
Qp

Pb

Cc(t)

QlQc

Qc+
Qp

Pb

Cc(t)

3
77777777777777777777775

; (5)

with

g9(y9) =

8<
:

s3y9

1 + s4y9
if y9 � 0

0 otherwise.
(6)
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The vector y represents TCE concentrations (in mg/liter) in each of the tissue

compartments and subcompartments. Speci�cally, we have

y(t) = [CB(t); CI(t); CA(t); Cv(t); Cbr(t); Ck(t); Cm(t); Ct(t); Cl(t)]
T

where CB(t), CI(t) and CA(t) represent TCE concentrations in the capillary, inter-

stitial and adipocyte regions of the adipose tissue respectively, and Cv(t), Cbr(t),

Ck(t), Cm(t), Cl(t) and Ct(t) denote TCE concentrations in the venous blood,

brain, kidney, muscle, liver and remaining tissue compartments, respectively. The

function Cc(t) that appears in the forcing function (5) is the concentration of TCE

in the chamber air, and is a speci�ed quantity. See [2, 22] for details.

Here we use the notation _y = @y
@t
, and h�; �iV�;V denotes the usual duality product

described in the next section. The system (2) belongs to a general class of abstract

problems that we consider in the next section, where we address issues of well-

posedness.

3 Well-posedness of solutions

First we present well-posedness results for a general class of abstract nonlinear

parabolic equations. The theoretical issues that we address here establish the ex-

istence, uniqueness and continuous dependence of solutions for the TCE PBPK-

hybrid model, as well as for a class of more general equations that may arise in

more complicated models of xenobiotic transport inside the body. Moreover, these

theoretical e�orts lay the groundwork for computational methods used in model

veri�cation, simulation and parameter estimation.

The main result that we establish here regarding well-posedness of solutions is

based on ideas presented in [5] and [1]. Banks and Musante [5] proved well-posedness

results for two classes of abstract nonlinear parabolic systems. The �rst class they

addressed requires the nonlinearity to satisfy a particular convexity condition. The

second class replaces the convexity condition with an assumption that the forcing

function has additional regularity with respect to time or space.

The TCE PBPK-hybrid model has a simple Michaelis-Menten nonlinearity in

the liver equation, and it can be shown that this system of model equations �ts

into the �rst of these abstract classes of problems. Although this happens to be

the case for TCE, which has a simple metabolic mechanism, there may be other

lipophilic compounds which have more complicated kinetics (e.g., protein binding)

that would not satisfy the convexity condition.

The forcing function in our TCE model is related to the inhalation of TCE va-

7



por in the air, and does not have the necessary regularity required for the model

to �t into the second class of abstract problems discussed by Banks and Musante.

Transport models for other inhaled compounds would have a similar forcing func-

tion that also may lack the required regularity. Therefore, a model for an inhaled

lipophilic compound with complicated nonlinear kinetics would likely fall outside

both of these abstract classes of problems.

Using ideas in [1], we can improve upon the results of Banks and Musante by

achieving well-posedness for a more general class of abstract nonlinear parabolic

equations. Ackleh, Banks and Pint�er [1] proved the well-posedness of second order

elastomer problems in which the nonlinearities satisfy local Lipschitz and aÆne

domination properties. Our result is based on their work, and will establish well-

posedness for a wider class of inhaled xenobiotic transport models.

3.1 Well-posedness results for a class of abstract nonlinear

parabolic systems

Consider the system

_y(t) +Ay(t) + g(y(t)) = f(t) in V� (7)

y(0) = y0 (8)

for t 2 (0; T ) with T <1. We assume that V , H and V� are separable real Hilbert
spaces that form a Gelfand triple [30] which satis�es

V ,! H ' H� ,! V�:

We denote the inner product in H by h�; �i, and the norms in each of the spaces V ,
H and V� are denoted by j�jV , j�j and j�jV� respectively. Moreover, we assume that

the embedding V ,! H is dense and continuous, with

j j � k j jV for all  2 V : (9)

The duality product h�; �iV�;V is the extension by continuity of the inner product in

H from H� V to V� � V (see [30] for a complete discussion).

We assume the operator A is de�ned in terms of a given sesquilinear form � :

V � V ! R: That is, we de�ne A : V ! V� by hAu; viV�;V = �(u; v), and it follows

under the assumptions on � below that A 2 L(V ;V�).

We make the following standing assumptions on �, f and g:

(A1) The sesquilinear form � is bounded in V , i.e., there exists C1 > 0 such that

j�(u; v)j � C1 jujV jvjV for all u; v 2 V : (10)

8



(A2) The sesquilinear form � is elliptic on V . That is, there exist k1 > 0 and � > 0

such that

�(u; u) � k1 juj2V � � juj2 for all u 2 V : (11)

(A3) The forcing function f satis�es

f 2 L2((0; T );V�): (12)

(A4) The nonlinear function g : H ! H satis�es the following local Lipschitz

condition: let Br(0) = fu 2 H : juj � rg denote the ball of radius r centered
around the origin in H. Then given r > 0, there exists LBr > 0 such that

jg(u)� g(v)j � LBr ju� vj for all u; v 2 Br(0): (13)

(A5) There exist positive constants C2 and C3 such that

jg(u)j � C2 juj+ C3 for all u 2 H: (14)

We say that y 2 L2((0; T );V) is a solution of (7), (8) if it satis�es

h _y(t);  iV�;V + �(y(t);  ) + hg(y(t));  i = hf(t);  iV�;V (15)

y(0) = y0 (16)

for all  2 V .

Theorem 3.1 (Local existence) Under Assumptions (A1) { (A4) and for any y0 2
H, the system (15) { (16) has a unique solution y 2 L2((0; T );V)\ C([0; T ];H) on
some interval [0; t�].

Proof: Let P denote the Hilbert space radial retraction onto the ball in H with

radius 1 centered at y0, and de�ne the nonlinear function ~g : H ! H by

~g(u) = g(Pu):

Then

j~g(u)� ~g(v)j � LB(jy0j+1)
jPu�Pvj � ~L ju� vj (17)

for all u; v 2 H, where ~L = 2 (see Lemma 2.1, p. 230 in [4]). Moreover,

j~g(u)j � ~L juj+ c (18)

where c = jg(0)j � 0 since

j~g(u)j � j~g(0)j � j~g(u)� ~g(0)j � ~L juj :

9



Now consider the problem

_y(t) +Ay(t) + ~g(y(t)) = f(t) in V� (19)

y(0) = y0; (20)

which is equivalent to

h _y(t);  iV�;V + �(y(t);  ) + h~g(y(t));  i = hf(t);  iV�;V (21)

y(0) = y0 (22)

for all  2 V .

Suppose that there exists a solution y(t) to (21) { (22) on an interval [0; T ].

Here we establish a priori bounds for this solution by setting  = y(t) in (21) and

integrating from 0 to t for some t 2 [0; T ]:

1

2
jy(t)j2 +

Z t

0

[�(y(s); y(s)) + h~g(y(s)); y(s)i]ds = 1

2
jy(0)j2 +

Z t

0

hf(s); y(s)iV�;Vds:

Moreover, using (11), (18), (22) and standard inequalities we obtain

jy(t)j2 + k1

Z t

0

jy(s)j2V ds � jy0j2 + 1

k1

Z T

0

jf(s)j2V� ds+ c2T + L̂ ~CT

� Ĉ(k1; f; y0; c; T; L̂; ~C): (23)

This establishes an a priori bound for any solution of the system (21) { (22).

Next we de�ne the \Galerkin" approximations for (19) by

yN (t) =

NX
k=1

cNk (t) k ;

where f kg1k=1 � V is a linearly independent total subset of V , and where

fcNk (t)gNk=1 are chosen so that yN (t) is the unique solution of

h _yN (t);  ji+ �(yN (t);  j) + h~g(yN (t));  ji = hf(t);  jiV�;V (24)

for j = 1; : : : ; N with cNk (0) = cN0k. Since f kg1k=1 is a total subset of V , we can and

do choose the constants fcN0kg so that

y0 = lim
N!1

NX
k=1

yN0 � lim
N!1

NX
k=1

cN0k k in V : (25)

Now we multiply (24) by cNj (t) and sum over j = 1; : : : ; N :

1

2

d

dt

h��yN(t)��2i+ �(yN (t); yN (t)) + h~g(yN (t)); yN (t)i = hf(t); yN (t)iV�;V :

10



Note that
��yN0 ��V is uniformly bounded by some constant K0 since yN0 converges

strongly to y0 as in (25), and therefore we can use arguments similar to those above

to obtain the uniform bound

��yN (t)��2 + k1

Z t

0

��yN (s)��2
V
ds � ĉ(k1; f;K0; c; T; L̂; ~C) (26)

for some ĉ which is independent of N .

Next we turn to the convergence of the Galerkin approximations. Note that (26)

implies that fyNg is bounded in L2((0; T );V). Therefore there exists
y 2 L2((0; T );V) and a subsequence of fyNg (which we will denote by fyNg) such
that

yN
w
* y in L2((0; T );V): (27)

It follows that yN
w
* y in L2((0; T );H), which further implies

yN(t)
w
* y(t) in H for almost every t 2 [0; T ]: (28)

Moreover, (18) and (26) imply that f~g(yN )g is bounded in L2((0; T );H), so that
there exists

h 2 L2((0; T );H) such that

~g(yN )
w
* h in L2((0; T );H): (29)

Next we establish that y is a solution to (21), (22). Let PM be the class of

functions � 2 L2((0; T );V) that can be represented in the form

�(t) =

MX
k=1

ak(t) k ;

where ak 2 C1[0; T ]. Moreover, we de�ne P =

1[
M=1

PM ; which implies that P is

dense in L2((0; T );V).

We multiply (24) by aj(t), then sum from 1 to M and integrate over [0; t],

integrating by parts in the �rst term. Then for �xed � 2 PM for M � N , we take

the limit as N !1 to obtainZ t

0

[�hy(s); _�(s)i+ �(y(s); �(s)) + hh(s); �(s)i]ds + hy(t); �(t)i

= hy0; �(0)i+
Z t

0

hf(s); �(s)iV�;Vds (30)

for almost every t 2 [0; T ], where we have used the convergences (27), (28) and (29).
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Note that the M we chose above was arbitrary, and since f jg is total in V it

follows thatZ T

0

_a(s)h�y(s);  ids +
Z T

0

a(s) [�(y(s);  ) + hh(s);  i � hf(s);  iV�;V ] ds = 0

for every  2 V . This equation holds for every a 2 C10 [0; T ], which further implies

that _y 2 L2((0; T );V)� ' L2((0; T );V�) and

h _y(t);  iV�;V + �(y(t);  ) + hh(t);  i = hf(t);  iV�;V (31)

for each  2 V and for almost every t 2 [0; T ]. Moreover, since y 2 L2((0; T );V) and
_y 2 L2((0; T );V�), it follows from Theorem 3.1 in [19, p. 19] that y 2 C([0; T ];H).

To show that y(0) = y0, consider (30) with � = �j = a(t) j , a 2 C1[0; T ] and

a(0) 6= 0, integrating by parts in the �rst term:Z t

0

[h _y(s); �(s)iV�;V + �(y(s); �(s)) + hh(s); �(s)i]ds + hy(t); �(t)i

+ h�y(s); �(s)ijs=ts=0 = hy0; �(0)i+
Z t

0

hf(s); �(s)iV�;Vds:(32)

It follows from (31) and (32) that y(0) = y0:

Finally, we show that h = ~g(y): If we let zN(t) = yN(t)� y(t) 2 L2((0; T );V) \
C([0; T ];H), and combine (24) with  j = yN (t) and (31) with  = y(t), integrating

from 0 to t and adding, we obtain

��zN(t)��2 + 2

Z t

0

�(zN(s); zN (s))ds =
��yN (0)� y0

��2 + 2

Z t

0

hf(s); zN(s)iV�;Vds

+ 4

Z t

0

hf(s); y(s)iV�;Vds� 2

Z t

0

h~g(yN (s)) � h(s); zN(s)ids

� 2

Z t

0

hh(s); yN (s)ids� 2

Z t

0

h~g(yN (s)); y(s)ids� 2hy(t); yN (t)i

+ 2hy0; yN(0)i � 2

Z t

0

�(yN (s); y(s))ds� 2

Z t

0

�(y(s); yN (s))ds: (33)

Note that

2

Z t

0

h~g(yN (s))� h(s); zN(s)ids = 2

Z t

0

h~g(yN (s))� ~g(y(s)); zN (s)ids

+ 2

Z t

0

h~g(y(s))� h(s); zN (s)ids;

and by applying (17) and (11) to (33) we obtain

��zN(t)��2 + 2

Z t

0

k1
��zN (s)��2

V
ds �

��yN (0)� y0
��2 + 2(~L+ �)

Z t

0

��zN(s)�� ds
+

��XN(t)
��+ ��Y N (t)

�� ; (34)

12



where

XN(t) = 2

�
�hy(t); yN(t)i �

Z t

0

�(y(s); yN (s))ds �
Z t

0

�(yN (s); y(s))ds

+ hy0; yN(0)i �
Z t

0

h~g(yN (s)); y(s)ids �
Z t

0

hh(s); yN (s)ids

+ 2

Z t

0

hf(s); y(s)iV�;Vds

�
;

Y N (t) = 2

Z t

0

h~g(y(s))� h(s); zN (s)ids+ 2

Z t

0

hf(s); zN(s)iV�;Vds:

Note that (25) and (27) imply that
��yN(0)� y0

��2 ! 0 and
��Y N (t)

��! 0 respec-

tively. It also can be shown that
��XN(t)

�� ! 0 by taking the limit as N ! 1 and

using the convergences (28), (27), (25) and (29):

XN(t) ! 2

�
� jy(t)j2 � 2

Z t

0

�(y(s); y(s))ds + jy0j2

� 2

Z t

0

hh(s); y(s)ids + 2

Z t

0

hf(s); y(s)iV�;Vds

�
;

which is two times the integrated form of (31) with  = y. Therefore
��XN(t)

��! 0

and (34) becomes

��zN(t)��2 + 2

Z t

0

k1
��zN(s)��2

V
ds � L̂

Z t

0

��zN(s)��2 ds+WN (t);

where L̂ = 2(~L+ �), and where WN (t) =
��yN (0)� y0

��2 + ��XN(t)
�� + ��Y N (t)

�� ! 0

as N !1. Using Gronwall's inequality we obtain

��zN(t)��2 � WN(t) +

Z t

0

L̂WN (s)eL̂t�L̂sds! 0;

which implies that
��zN(t)��2 ! 0 for t 2 [0; T ] and hence yN (t)! y(t) in H for each

t. It follows thatZ t

0

��~g(yN (s))� ~g(y(s))
��2 ds � ~L2

Z t

0

��yN(s)� y(s)
��2 ds! 0

so that ~g(yN ) ! ~g(y) in L2((0; T );H). Since (29) implies that ~g(yN )
w
* h in

L2((0; T );H), we have h = ~g(y) in L2((0; T );H) and therefore

hh;  i = h~g(y);  i

for every  2 V . This establishes that y is a solution of (21), (22). The uniqueness

of solutions can be shown using standard arguments (see [3, 5]), and is presented

in detail in [22].

13



Finally, we show the existence of a solution for the original problem (15), (16)

on some interval in time. Since the solution y of (21), (22) satis�es y 2 C([0; T ];H),
there exists t� 2 [0; T ] such that

jy(t)� y0j � 1

for all t 2 [0; t�]. Therefore y(t) 2 B1(y0) for all t 2 [0; t�], which further implies

that ~g(y(t)) = g(Py(t)) = g(y(t)) for all t 2 [0; t�]. It follows that y is a solution

of (15), (16) on the interval [0; t�]. The uniqueness of the solution y can be shown

using standard arguments. This completes the proof of the theorem.

The existence of a unique global solution to (15), (16) now can be shown using

the additional assumption (A5).

Theorem 3.2 (Global existence) Under Assumptions (A1) { (A5) with y0 2 H,

the system (15), (16) has a unique global solution y 2 L2((0; T );V) \ C([0; T ];H)
which depends continuously on the data (y0; f).

Proof: Let yN (t) =
PN

k=1 c
N
k (t) k , where fcNk (t)g are chosen so that yN(t) is a

solution of the �nite dimensional system of equations derived from (15), (16) with

 k as test functions. Moreover, we choose the constants fcN0kg so that

y0 = lim
N!1

NX
k=1

yN0 � lim
N!1

cNok k in V : (35)

As before we obtain

��yN(t)��2 + 2

Z t

0

�(yN (s); yN (s))ds + 2

Z t

0

hg(yN (s)); yN (s)ids

= 2

Z t

0

hf(s); yN (s)iV�;Vds+
��yN (0)��2 ;

and using arguments similar to those for Theorem 3.1 we arrive at the uniform

bounds ��yN (t)��2 � Ĉ(y0; k1; C3; T; C2; �; f; C0) (36)

and ��yN (t)��2 + k1

Z t

0

��yN(s)��2
V
ds � Ĉ1

for t 2 [0; T ], where T is arbitrary.

This implies that there exists y 2 L2((0; T );V) and a subsequence of fyNg such
that

yN
w
* y in L2((0; T );V)

yN (t)
w
* y(t) a.e. in H

14



g(yN )
w
* h in L2((0; T );H):

In addition, we use the weak lower semicontinuity of norms to obtain

jy(t)j2 � lim inf
N!1

��yN (t)��2 � Ĉ (37)

for t 2 [0; T ]. Therefore y(t) 2 Bp
Ĉ
(0) in H for 0 � t � T , and the arguments of

Theorem 3.1 imply that y is the unique global solution to (15), (16).

To prove continuous dependence, we consider solutions y and ~y in L2((0; T );V)
to (15), (16) with initial conditions y0 and ~y0 and forcing functions f and ~f , respec-

tively. Note that since y 2 L2((0; T );V) satis�es (15) with y(0) = y0, we can use

arguments similar to those used earlier in this proof for yN (t) to obtain the bounds

jy(t)j2 � Ĉ(y0; k1; C3; T; C2; f; �) = Ĉ2

j~y(t)j2 � Ĉ(~y0; k1; C3; T; C2; ~f; �) = Ĉ3:

Therefore y(t) 2 Bp
Ĉ2

and ~y(t) 2 Bp
Ĉ3

, which imply that

jg(y(t))� g(~y(t))j � LB
Ĉ4
jy(t)� ~y(t)j ; (38)

where Ĉ4 = maxf
p
Ĉ2;

p
Ĉ3g.

Now consider w(t) � y(t)� ~y(t), which satis�es w(0) = y0 � ~y0 and

h _w(t);  iV�;V + �(w(t);  ) + h�g(t);  i = hf̂(t);  iV�;V (39)

for all  2 V , where �g(t) = g(y(t))�g(~y(t)) and f̂(t) = f(t)� ~f(t). Note that (39)

is also satis�ed for all  2 L2((0; T );V).

For �xed t 2 [0; T ] we choose  = w(t) 2 V in (39) and integrate from 0 to t:Z t

0

[h _w(s); w(s)iV�;V + �(w(s); w(s)) + h�g(s); w(s)i] ds =
Z t

0

hf̂(s); w(s)iV�;Vds:

We then apply the conditions (11), (38) and Gronwall's inequality to obtain

jw(t)j2 � e
2(LB

Ĉ4
+�)T

 
jw(0)j2 + 1

k1

Z T

0

���f̂(s)���2
V�

ds

!

for all t 2 [0; T ]. Therefore we have shown continuous dependence in C([0; T ];H)
on the initial data (y0; f). This completes the proof of Theorem 3.2.

3.2 Well-posedness for the TCE model

In this section we verify that the TCE model �ts into the class of abstract nonlinear

parabolic systems discussed in the previous section. This will establish the well-

posedness of the TCE model.
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Consider the weak formulation (2) of the TCE model with the de�nitions of V ,
H and the corresponding norms and inner products as outlined in Section 2.1. The

spaces V and H form a Gelfand triple as discussed in Section 3.1 with the duality

product h�; �iV�;V . It can be shown using standard arguments that Assumptions

(A1) { (A5) are satis�ed for the TCE PBPK-hybrid weak formulation (see [22] for

detailed proofs). Therefore we can apply Theorem 3.2 to establish the existence,

uniqueness and continuous dependence of a global solution for the TCE model given

by (2) { (5).

4 Estimation of parameters and convergence of

Galerkin approximations

The TCE PBPK-hybrid model is dependent on many physical, biological and chem-

ical parameters, some of which can be explicitly measured. However, most of the

adipose model parameters are unknown, and it would be impractical to measure

them experimentally. Therefore, we must use inverse problem techniques to esti-

mate these parameters.

In this section we address theoretical issues related to the standard parameter

estimation problem associated with the TCE PBPK-hybrid model, and we establish

the theoretical convergence of our numerical approximation scheme. The results we

present here are based on the work of Banks and Kunisch [4], who developed results

for a general parameter estimation problem. Banks and Musante [6] applied these

results to the abstract class of nonlinear parabolic systems discussed in [5]. Here we

extend the ideas presented in [4] and [6] to the TCE model and the abstract class

of nonlinear parabolic systems discussed in Section 3.

Consider the abstract problem

_y(t) +A(q)y(t) + g(q)(y(t)) = f(t; q) (40)

y(0) = y0; (41)

which is a parameterized formulation of the system (7), (8). Speci�cally, the

sesquilinear form �, the nonlinearity g and the forcing function f are now func-

tions of a vector q of parameters which must be estimated using data.

The parameter vector q belongs to a set Q of admissible parameters, where Q

may be an in�nite dimensional space. In the case of our TCE model, the physiology

of adipose tissue (see [2, 22]) suggests that many of the adipose model parameters

may be dependent on time and/or space. This includes parameters such as the
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volumetric blood 
ow rate Qf to adipose tissue and the permeability coeÆcients

�BA, �BI and �IA. Such a dependency on time and/or space would lead to in�nite

dimensional parameters and an in�nite dimensional parameter space Q.

Using arguments and modi�ed conditions as outlined in Section 3, we can readily

establish the existence of a unique solution to the system

h _y(t);  iV�;V + hA(q)y(t);  iV�;V + hg(q)(y(t));  i = hf(t; q);  iV�;V (42)

y(0) = y0 (43)

for  2 V . Speci�cally, the modi�ed conditions used to prove the existence of a

solution to the parameterized system (42), (43) include the extra requirement of

uniformity with respect to the parameters q.

These solutions y(�; q) to the parameterized problem can be used with experi-

mental data to estimate the parameters q by solving the least squares parameter

estimation problem given by

min
q2Q

J(q; z) =

NtX
i=1

jOy(ti; �; q)� zij2 ; (44)

where zi, i = 1; : : : ; Nt are observations taken at time ti, and j�j is an appropriately

chosen Euclidean norm. The solutions y(ti; �; q) belong to an in�nite dimensional

state space H. As discussed in [4], the observation operator O is determined by

the type of data that is being collected. Examples appropriate for the TCE model

and related experiments include observations of concentrations taken in time at a

given point, or observations in time of an average concentration over a region. This

latter type of observation may be used when concentrations are measured from

homogenized tissue samples.

As in [4, 6, 7], we address the parameter estimation problem (44) by study-

ing the convergence properties of the �nite dimensional approximating parameter

estimation problems

min
q2QM

JN (q) =

NtX
i=1

��OyN (ti; �; q)� zi
��2 ; (45)

where the sets QM are a sequence of �nite dimensional sets that approximateQ, and

yN (t) 2 HN � H is the solution to the following �nite dimensional approximation

of (42), (43):

h _yN (t);  i + hA(q)yN (t);  iV�;V + hg(q)(yN (t));  i = hf(t; q);  iV�;V (46)

yN (0) = PNy0 (47)

for  2 HN . The set HN is a �nite dimensional subspace of the state space H, and
PN is the orthogonal projection of HN onto H.
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Assuming certain compactness conditions that we detail below, we are guaran-

teed that for eachM and N there exists a minimizer �qM;N for the �nite dimensional

estimation problem (45). In this section we address the convergence properties of

this sequence of minimizers asM;N !1, and the circumstances for which we can

guarantee convergence to a minimizer for the in�nite dimensional parameter esti-

mation problem (44). The results we prove below for the abstract class of systems in

Section 3 are adaptations and extensions of results for the general estimation prob-

lem discussed in [4] and the estimation problem for the class of nonlinear parabolic

systems presented in [6]. We also show that the results established here apply specif-

ically to the TCE PBPK-hybrid model, which is a member of the class of systems

described above.

We obtain as a special case (with qN � q �xed in Theorem 4.3 below) the

convergence of solutions for the �nite dimensional approximations (46), (47) to

the solution for the in�nite dimensional system (42), (43). This establishes the

convergence of the numerical scheme that we implement computationally in [22] to

generate model simulations and for use in parameter estimation problems.

4.1 Well-posedness of solutions for the parameterized system

In this section we address the well-posedness of solutions for (40), (41). That is,

using the arguments detailed in Section 3, we may prove for this abstract system

the existence of a unique solution which depends continuously on the initial data.

As in Section 3.1, we de�ne the state spaces V and H which form the Gelfand

triple

V ,! H ,! V�;
where V is continuously and densely embedded in H. Moreover, there exists k > 0

such that

j j � k j jV (48)

for all  2 V , where j�jV is the norm on V and j�j denotes the norm on H. We

continue to use the notation h�; �iV�;V to represent the duality product, which is the

extension by continuity of the inner product h�; �i in H (see Section 3.1).

Here we consider the system

h _y(t);  iV�;V + �(q)(y(t);  ) + hg(q)(y(t));  i = hf(t; q);  iV�;V (49)

y(0) = y0 (50)

for  2 V , where the sesquilinear form �(q) : V � V ! R is associated with the

operator A(q) : V ! V� so that �(q)(u; v) = hA(q)u; viV�;V for all u; v 2 V .
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We make the following assumptions for the parameterized system, which are

the same assumptions as those made in Section 3.1 with the extra requirement of

uniformity in q 2 Q:

(A10) The sesquilinear form �(q) is uniformly bounded in V , i.e., there exists C1 > 0

independent of q 2 Q such that

j�(q)(u; v)j � C1 jujV jvjV for all u; v 2 V : (51)

(A20) The sesquilinear form �(q) is uniformly strictly coercive on V . That is, there
exist k1; � > 0 independent of q 2 Q such that

�(q)(u; u) � k1 juj2V � � juj2 for all u 2 V : (52)

(A30) The forcing function f(�; q) satis�es

f(�; q) 2 L2((0; T );V�) (53)

for each q 2 Q.

(A40) The nonlinear function g(q) : H ! H satis�es the following uniform local

Lipschitz condition: let Br(0) = fu 2 H : juj � rg denote the ball of radius

r centered around the origin in H. Then given r > 0, there exists LBr > 0

independent of q 2 Q such that

jg(q)(u)� g(q)(v)j � LBr ju� vj for all u; v 2 Br(0): (54)

(A50) There exist positive constants C2 and C3 independent of q 2 Q such that

jg(q)(u)j � C2 juj+ C3 for all u 2 H: (55)

Under these assumptions we can prove the existence of a unique solution to the

parameterized system (49), (50). The proof of this theorem is similar to the proof

for Theorem 3.2.

Theorem 4.1 Under Assumptions (A10) { (A50) and for any y0 2 H, the sys-

tem (49) { (50) has a unique global solution y 2 L2((0; T );V) \ C([0; T ];H) which
depends continuously on the initial data, with _y 2 L2((0; T );V�).

4.2 The general parameter estimation problem

In this section we present theorems related to convergence for the general parameter

estimation problem

min
q2Q

J(q; z) =

NtX
i=1

jOy(ti; �; q)� zij2 ;
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given the observations zi, i = 1; : : : ; Nt taken at time ti and the observation operator

O. Moreover, y(ti; �; q) are the solutions of the parameterized system (49), (50). As

in Section 3.1, we use Galerkin type approximations applied to the parameterized

system (40), (41).

Proceeding as in [6, 7], we make the following assumptions about the state and

parameter spaces H, Q, HN and QM :

(B1) The sets Q and QM each lie in a metric space ~Q with metric d. We assume

that Q and QM are compact in this metric, and that there is a mapping

iM : Q ! QM such that QM = iM (Q). Moreover, for each q 2 Q we have

iM (q)! q in Q, where the convergence is uniform in q 2 Q.

(B2) The �nite dimensional subspaces HN satisfy HN � V for all N .

(B3) For each  2 V ,
�� � PN 

��
V
! 0 as N ! 1, where PN is the orthogonal

projection operator of H onto HN .

Moreover, we assume that A(q), g(q) and f(�; q) depend continuously on the pa-

rameters q 2 Q in the sense that

(C1) j�(q)(u; v)� �(~q)(u; v)j � d1(q; ~q) jujV jvjV for all u; v 2 V , where d1(q; ~q)! 0

as d(q; ~q)! 0.

(C2) jg(q)(u)� g(~q)(u)j � d2(q; ~q) juj for all u 2 H, where d2(q; ~q)! 0 as d(q; ~q)!
0.

(C3) The mapping q ! f(�; q) is continuous from Q to L2((0; T );V�).

Note that the compactness conditions of Assumption (B1) guarantee the exis-

tence of a minimizer �qM;N to the �nite dimensional estimation problem (45). The

following theorem from [7] (Theorem 5.1, p. 124) establishes conditions for which

the sequence of minimizers �qM;N converges to a minimizer for the in�nite dimen-

sional estimation problem (44).

Theorem 4.2 To obtain convergence of at least a subsequence of f�qM;Ng to a solu-
tion �q of minimizing (44) subject to (42), (43), it suÆces, under Assumption (B1),

to argue that for arbitrary sequences fqM;Ng in Q with qM;N ! q in Q, we have

OyN (t; qM;N)! Oy(t; q): (56)

The condition (56) implies that the original sequence of Galerkin approxima-

tions in Section 3.1 converges, which is stronger than the subsequential convergence
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proven there. This stronger result is important for establishing the convergence of

the numerical scheme that we develop and implement in [22].

Now we verify the conditions of Theorem 4.2 for the general estimation problem

described in this section.

Theorem 4.3 Assume that Assumptions (B1) { (B3) and (C1) { (C3) are satis-

�ed, in addition to the conditions of Theorem 4.1. Let qN be any sequence in QN

satisfying qN ! q 2 Q. Then

yN (t; qN )! y(t; q) in H uniformly on [0; T ];

yN(t; qN )! y(t; q) in V for almost all t > 0;

where yN satis�es

h _yN (t);  i+ �(qN )(yN (t);  ) + hg(qN )(yN (t));  i = hf(t; qN );  iV�;V (57)

yN (0) = PNy0 (58)

for all  2 HN ; and y satis�es (49) { (50) for all  2 V.

Proof: It follows from Theorem 4.1 that y(t) 2 H for every t 2 [0; T ] and y(t) 2 V
for almost every t 2 [0; T ]. Moreover,

��yN(t; qN )� y(t; q)
�� � ��yN (t; qN )� PNy(t; q)

��+ ��PNy(t; q)� y(t; q)
�� :

By Assumption (B3), we have
�� � PN 

��
V
! 0 for each  2 V as N ! 1.

Note that y 2 C([0; T ];H) implies that fy(t) : t 2 [0; T ]g is compact in H, which
along with (48) and the dense embedding V ,! H further implies that

��PNy(t; q)� y(t; q)
��! 0

uniformly in t 2 [0; T ]. Therefore it suÆces to show that

��yN (t; qN )� PNy(t; q)
��! 0

uniformly on [0; T ] as N !1.

As in [6], we de�ne

yN = yN (t; qN )

y = y(t; q)

�N = yN (t; qN )� PNy(t; q) = yN � PNy:

It follows that

_�N = _yN � d

dt
PNy;
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and hence for all  2 HN we have

h _�N ;  iV�;V = h _yN � d

dt
PNy;  iV�;V

= h _yN � _y + _y � d

dt
PNy;  iV�;V

= h _yN ;  i � h _y;  iV�;V + h _y � d

dt
PNy;  iV�;V :

Moreover, we use (49) and (57) to obtain

h _�N ;  iV�;V = h _y � d

dt
PNy;  iV�;V + hf(t; qN )� f(t; q);  iV�;V

+ �(qN )(y � PNy;  ) + �(q)(y;  ) � �(qN )(y;  )

+ hg(q)(y) � g(qN)(yN );  i � �(qN )(yN � PNy;  )

for all  2 HN , where we have added and subtracted �(qN )(y � PNy;  ). It then

follows from the de�nition of �N that

h _�N ;  iV�;V + �(qN )(�N ;  ) = h _y � d

dt
PNy;  iV�;V + hf(t; qN )� f(t; q);  iV�;V

+ �(q)(y;  )� �(qN )(y;  ) + �(qN )(y � PNy;  )

+ hg(q)(y)� g(qN )(yN );  i (59)

for all  2 HN . Now we set  = �N 2 HN in (59) to arrive at the equation

1

2

d

dt

h���N
��2i + �(qN )(�N ;�N ) = h _y � d

dt
PNy;�N iV�;V

+ hf(t; qN )� f(t; q);�N iV�;V + �(q)(y;�N )� �(qN )(y;�N )

+ �(qN )(y � PNy;�N ) + hg(q)(y)� g(qN )(yN );�N i (60)

for almost all t 2 [0; T ]. We integrate the left side of (60) and apply Assumption

(A20) and the initial condition

�N (0) = yN (0)� PNy(0) = yN(0)� PNy0 = 0

to obtain the inequalityZ t

0

1

2

d

dt

���N (s)
��2 ds + Z t

0

�(qN )(�N (s);�N (s))ds

� 1

2

���N (t)
��2 + k1

Z t

0

���N (s)
��2
V
ds� �

Z t

0

���N (s)
��2 ds(61)

for all t 2 [0; T ].

Next we integrate the right side of (60) from 0 to t. Note that the �rst term

is equal to zero, which follows from the fact that PN is the orthogonal projection

from H onto HN . Indeed, since y � PNy 2 H we have

h _y � d

dt
PNy;  iV�;V =

d

dt
hy � PNy;  i = 0 (62)
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for all  2 HN since PN is the orthogonal projection of H onto HN , which implies

that (I � PN )y is orthogonal to all elements in HN (including �N (s) for all s 2
[0; T ]).

Integrating the second term on the right side of (60), we use the inequality

ab � (1=2)a2 + (1=2)b2 to obtainZ t

0

hf(s; qN )� f(s; q);�N (s)iV�;Vds � 1

2�

Z t

0

��f(s; qN)� f(s; q)
��2
V�
ds

+
�

2

Z t

0

���N (s)
��2
V
ds; (63)

where � > 0. We proceed in a similar manner with the third and fourth terms on

the right side of (60), applying Assumption (C1):Z t

0

�
�(q)(y(s);�N (s)) � �(qN )(y(s);�N (s))

�
ds � d21(q; q

N )

2�

Z t

0

jy(s)j2V ds

+
�

2

Z t

0

���N (s)
��2
V
ds: (64)

The integral of the �fth term on the right side of (60) can be bounded using As-

sumption (A10):Z t

0

�(qN )(y(s)� PNy(s);�N (s))ds � C2
1

2�

Z t

0

��y(s)� PNy(s)
��2
V
ds

+
�

2

Z t

0

���N (s)
��2
V
ds: (65)

Finally, we integrate the sixth term from 0 to t, obtainingZ t

0

hg(q)(y(s))� g(qN )(yN (s));�N (s)ids

�
Z t

0

��hg(q)(y(s)) � g(qN )(y(s));�N (s)i
�� ds

+

Z t

0

��hg(qN )(y(s))� g(qN )(yN (s));�N (s)i
�� ds: (66)

The �rst term on the right side of (66) can be estimated using Assumption (C2)

and (48):Z t

0

jhg(q)(y(s)) �g(qN)(y(s));�N (s)i
�� ds � Z t

0

d2(q; q
N )k2 jy(s)jV

���N (s)
��
V
ds

� k2d22(q; q
N )

2�

Z t

0

jy(s)j2V ds+
k2�

2

Z t

0

���N (s)
��2
V
ds: (67)

We obtain a bound for the second term on the right side of (66) using Assumption

(A40) applied to y(s) and PNy(s). In the proof of Theorem 3.2, we showed that the

solution y 2 L2((0; T );V) \ C([0; T ];H) to the system (15), (16) is bounded by the

constant Ĉ as in (37). It is easily seen that for each s 2 [0; T ], the same bound

jy(s)j2 � Ĉ
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applies for the solution y 2 L2((0; T );V) \ C([0; T ];H) to the system (49), (50)

which is guaranteed by Theorem 4.1. Moreover, for each s 2 [0; T ] we have��PNy(s)
�� � kPNk jy(s)j = jy(s)j ;

which implies that both y(s) and PNy(s) are in the ball Bp
Ĉ
in H. Using the same

arguments and the bound (36), we can show that yN(s) is in Bp
Ĉ
. Hence we may

apply Assumption (A40) and (48) to obtainZ t

0

jhg(qN )(y(s))� g(qN )(yN (s));�N (s)ijds

�
Z t

0

��hg(qN )(y(s)) � g(qN )(PNy(s));�N (s)i
�� ds

+

Z t

0

��hg(qN )(PNy(s))� g(qN)(yN (s));�N (s)i
�� ds

�
k2L2Bp

Ĉ

2�

Z t

0

��y(s)� PNy(s)
��2
V
ds+

k2�

2

Z t

0

���N (s)
��2
V
ds

+ LBp
Ĉ

Z t

0

���N (s)
��2 ds: (68)

Now we combine the terms in (61) { (68) and use (60) to arrive at the estimate

1

2

���N (t)
��2+ �k1 � (3 + 2k2)

�

2

�Z t

0

���N (s)
��2
V
ds

� 1

2�

Z t

0

��f(s; qN )� f(s; q)
��2
V�
ds+

d21(q; q
N )

2�

Z t

0

jy(s)j2V ds

+
C2
1

2�

Z t

0

��y(s)� PNy(s)
��2
V
ds+

k2d22(q; q
N )

2�

Z t

0

jy(s)j2V ds

+
k2L2Bp

Ĉ

2�

Z t

0

��y(s)� PNy(s)
��2
V
ds+ (LBp

Ĉ

+ �)

Z t

0

���N (s)
��2 ds

� ÆN (t) + (LBp
Ĉ

+ �)

Z t

0

���N (s)
��2 ds

� ÆN (T ) + (LBp
Ĉ

+ �)

Z t

0

���N (s)
��2 ds (69)

for t 2 [0; T ]. Note that as N !1 we have ÆN (t)! 0 for each t 2 [0; T ]. This is a

consequence of Assumption (C3), qN ! q, y 2 L2((0; T );V), and Assumption (B3).

Now we choose � > 0 in (69) so that k1 � (3 + 2k2)�
2
> 0. We then apply

Gronwall's inequality to obtain���N (t)
��2 � 2e

2(LBp
Ĉ

+�)T
ÆN (T )! 0; (70)

which implies that �N ! 0 in C([0; T ];H) as N ! 1. Moreover, combining (69)

with (70) we have�
k1 � (3 + 2k2)

�

2

�Z t

0

���N (s)
��2
V
ds � ÆN (T ) + (LBp

Ĉ

+ �)

Z t

0

���N (s)
��2 ds
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� ÆN (T )

�
1 + 2T (LBp

Ĉ

+ �)e
2(LBp

Ĉ

+�)T
�

! 0

and hence �N ! 0 in L2((0; T );V). This completes the proof of the theorem.

4.3 Parameter estimation for the TCE model

The TCE PBPK-hybrid

model outlined in Section 2 includes several physical parameters, each of which is

considered a positive constant that is bounded above by some maximum admissible

value. This implies that the parameters for this model lie in a compact subset of

Euclidean space. Therefore we set QM = Q for all M .

Using arguments detailed in [22], it can be shown that Assumptions (A10) {

(A50) are satis�ed for the TCE PBPK-hybrid model. We state without proof that

Assumptions (C1) { (C3) also are satis�ed for the TCE model. Moreover, it is

seen that Assumptions (B1) { (B3) hold for our choice of state spaces V , H and HN

de�ned in Section 2.1. It follows that the theoretical results presented in Section 4.2

apply to the TCE PBPK-hybrid model.

Experimental observations collected in the experiments of Evans et al. [15] in-

clude measurements of TCE concentrations in the venous blood, as well as unbound

concentrations in the fat, liver and brain tissue. The tissue concentrations are col-

lected from homogenized tissue samples, leading to a measurement of an e�ective

average tissue concentration. For the liver and brain tissues our model assumes

well-mixed compartments, which implies that the average tissue concentration is

equal to the concentration at any point in that tissue. Therefore the observation

operators for the venous blood and the brain and liver tissues are given by

Oy(ti; �; q) = Cj(ti; q); (71)

where Cj = Cv , Cbr and Cl respectively.

In the adipose tissue our model assumes spatially-varying concentrations, so

that an e�ective average concentration is calculated by taking an average of con-

centrations over the adipocyte region. This implies an observation operator of the

form

Oy(ti; �; q) = 1

2�2

Z �

0

Z 2�

0

CA(ti; �; �)d� d�: (72)

Each of these observation operators is utilized in [22], where we present detailed

computational parameter estimation results for the TCE model.
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5 Concluding remarks

In this paper we have addressed theoretical issues related to the TCE PBPK-hybrid

model and a general class of toxicokinetic models. Speci�cally, we established ex-

istence, uniqueness and continuous dependence results for an abstract class of non-

linear parabolic systems which includes the TCE PBPK-hybrid model as a special

case. Moreover, we addressed theoretical issues for the associated general parameter

estimation problem and established the convergence of the Galerkin �nite element

approximations.
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